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The physics of random shearing by zonal flows and the consequent reduction of scalar field transport
are studied. In contrast to mean shear flows, zonal flows have a finite autocorrelation time and can
exhibit complex spatial structure. A random zonal flow with a finite correlation time !ZF decorrelates
two nearby fluid elements less efficiently than a mean shear flow does. The decorrelation time is
!D= !!" /!ZF#rms

2 "1/2 (!" is the turbulent scattering time, and #rms is the rms shear), leading to larger
scalar field amplitude with a slightly different scaling !$!D /#rms", as compared to the case of
coherent shearing. In the strong shear limit, the flux scales as $#rms

−1 . © 2004 American Institute of
Physics. [DOI: 10.1063/1.1808455]

Shear flows are ubiquitous in a variety of physical sys-
tems, including differential rotation in galaxies and stars,1

zonal flows in major planets,2 laboratory plasmas,3 and earth
atmosphere.4 These coherent structures play a distinctive role
in determining transport in plasmas due to the dramatic ef-
fect of shearing on regulating turbulence (see, e.g., Ref. 3).
The reduction of transport results from the change not only
in the turbulence intensity but also in the correlation time
and cross phase. For instance, in the case of a passive scalar
field %,5 the transport is reduced as #%vx$$#−1 by a station-
ary linear shear flow U=x#ŷ, mainly because the turbulence
amplitude decreases as #%2$$#−5/3, with no significant
change in the cross phase !#%vx$ /%#%2$#vx

2$$#−1/6" (cf. Ref.
6). When the turbulent flow vx evolves self-consistently, its
amplitude is also reduced by shearing, resulting in a stronger
reduction in the transport.7

Zonal shear flows, often encountered in a variety of sys-
tems, are often self-generated by the underlying turbulence
via Reynolds stress,8 and thus very likely to be structured
and possibly even random in both space and time, on account
of the broad range of their excitation via modulational insta-
bility. Thus, in contrast to smooth, static mean flows, the
zonal flow patterns can be expected to have finite correlation
time and complex spatial structure. These shear flows, which
are nonlinearly driven by turbulence, are so-called zonal
flows and should be distinguished from mean flows. Zonal
flows, for example, are shown to play a crucial role in regu-
lating turbulence.9 Therefore, it is important to understand
how much transport is reduced, in general, by shear flows
with finite correlation time !ZF (Ref. 10) and complex spatial
form. Nearly all of the previous work on shear flow regula-
tion of transport has considered the case of the mean shear,
only. In particular, we note that the exegesis of the theoreti-
cal question of the relation between fluctuation levels and
transport dates back to the early 1960s, and that during the
past 10 years, a community consensus as to both the ubiquity
and importance of zonal flows in drift wave turbulence has
arisen. Thus, an analysis of the relation between fluctuations

and transport in the presence of zonal flows is both relevant
and long overdue. Such an analysis is crucial to the long-
term goal of relating fluctuations to transport, since direct
measurement of turbulent fluxes in the core of relevant plas-
mas remains too difficult.

The purpose of the paper is to study the effect of random
(i.e., broadband) shearing (by zonal flows) on turbulence
regulation in a scalar field model. Intuitively, it is clear that
shearing becomes ineffective as !ZF→0, since then a shear
flow has no time to act on an eddy.10 In the physically rel-
evant case where !ZF is larger than !c, the correlation time of
turbulence, the critical value of the correlation time of the
zonal flows, below which the shearing effect is reduced is
roughly !#=#rms

−1 , where #rms= ##2$1/2 is the rms value of
the shear. For !ZF&!#, the effective shearing rate becomes
#ef f=!ef f

−1 =!ZF#rms
2 !&#rms". It is well known that in the

strong shear limit (i.e., !# /!"→0), sheared flows enhance
the decorrelation rate of two nearby fluid elements to !'

−1

= !Dk2#2"−1/3= !!"!#
2 "−1/3, above the value !"= !Dk2"−1 deter-

mined by turbulent scattering alone.11 Here, D is the effec-
tive diffusivity including the effect of nonlinear mixing, and
1/k is the characteristic scale of the turbulence. Note that
!'(!# in the strong shear limit. When the shearing is ran-
dom, this rate is also reduced to !D

−1= !Dk2!ZF##2$2"−1/2
= !!"!ef f"−1/2 due to inefficient shearing (i.e., !'&!D for
!ZF&!'). As !ZF becomes large enough to satisfy the in-
equality !ZF(!D, the results for the case of steady shear flow
are recovered, as zonal flows can then be considered to be
steady, albeit with complex spatial structure. Another inter-
esting consequence of random shearing with no net mean
shear !##$=0" is the substitution of resonance between the
flow and turbulence (where a local Doppler shifted frequency
vanishes) by a smooth, probabilistic interaction kernel. We
recall that resonance underlies irreversibility, and yields a
nontrivial transport scaling. The scaling of the flux, however,
turns out to be similar to that for the case of a steady linear
shear flow, with #→#rms. This reduction is an important
benchmark for the theory. In comparison, the amplitude of
the scalar field will be shown to increase slightly (with a
different scaling) because of longer effective decorrelation
time !!D)!'".
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Let us consider the transport of scalar field % by random
turbulent flow v and random zonal flow U=U!x , t"ŷ (with
#v$= #U$=0) in the two dimensional x and y plane,

&!t + U!x,t"!y'%! = − vx!x%0 + D!!xx + !yy"%!, !1"

where %! and %0 are fluctuating and mean parts of %, and D
is the effective diffusivity, including nonlinear interaction.
The random turbulent flow is assumed to have characteristic
frequency *k and correlation time !c=+k

−1, while zonal flows
have correlation time !ZF. Since a zonal flow U!x , t" is ran-
dom, the scalar field flux ,= ##%!vx$$ should be averaged
over the ensemble of zonal flows, in addition to that of the
turbulent flow v. We shall use angular brackets # $ to denote
the average over either one of the two, and use double angu-
lar brackets ## $$ to denote the average over both. At this
point, the alert reader may be somewhat skeptical of the
assumption of independent statistics and the probability dis-
tribution functions (PDFs) for fluctuations and zonal flows.
In this regard, it is useful to think of the fluctuations as
complex fields, with amplitude and phase. Zonal flows are
driven by fluctuation intensity, via Reynolds stresses, etc.
Thus, the fluctuation statistics have a degree of freedom be-
yond those of the zonal flow, so we speculate that the inter-
dependence of the two may be regarded as weak. Further
study of this interesting point is a topic for future investiga-
tions. In the following, we focus on the two interesting lim-
its: (a) when a zonal flow is temporally random on time
scales !ZF)!c, with a fixed linear profile U!x , t"=x#!t", and
(b) when the zonal flow is steady, but spatially complex
&U!x , t"=U!x"'.12

We now examine the first case when zonal flows have
finite correlation time !ZF with a linear spatial profile, i.e.,
U!x , t"=x#!t". The degree to which randomness of zonal
flows (finite !ZF) influences the dynamics depends on
whether !ZF is smaller or larger than other characteristic time
scales, such as the shearing time !# and decorrelation time
!'. As we are interested in the strong shear limit, !' is taken
to be much larger than !# throughout this paper. Given the
uncertainty in !ZF, physically relevant cases are likely to be
(i) !c&!ZF-!#-!D and (ii) !#-!c&!ZF-!D. Case (i) cor-
responds to .-correlated turbulent (and zonal) flow, where
the irreversibility arises mainly from the randomness of the
flow while in case (ii), the zonal flow-wave resonance is the
main source of irreversibility (in the limit !ZF→/). It is
illuminating that even without complicated analysis, the scal-
ing of flux in case (ii) can be easily obtained, since the long
time average of the flux does not depend on the dissipation,
rendering it legitimate to take !ZF→/. Thus, we can simply
use the result for a fixed shear flow #%!vx$$.!*k−x#ky",
and then take its average over an ensemble of zonal flows.
For simplicity, we perform the latter by assuming Gaussian
probability for # as dP&#'= !1/#rms"d#e−#2/2#rms

2
:

##%!vx$$ $
1

xky#rms
e−*k

2/2x2ky
2#rms

2
. !2"

Thus, a sharp resonance .!*k−x#ky" becomes a smooth,
probabilistic interaction kernel, making the flux maximal for
*k=%2ky2x2#rms

2 , with its value $#rms
−1 . Thus, the flux has a

similar scaling with #rms as with # in the case of a fixed
shear flow. The same result [Eq. (2)] shall also be obtained
below through a more laborious calculation. It is important
to note that the same analysis cannot be applied to ##%!2$$,
since the long time average of #%!2$ for a fixed shear is taken
over a time longer than !D, which is much larger than !ZF.
Thus, a more rigorous analysis is necessary.

To incorporate the shearing effect in Eq. (2), we employ
a time-dependent wave number kx!t" in the direction of the
shear (i.e., shearing coordinate), by assuming

%!!x,t" =
1

!20"2 ( d2kei!kx!t"x+kyy"%̃!kx!t",ky,t" . !3"

Upon using Eq. (3), and assuming !tkx!t"=−ky#!t", Eq. (1)
can be easily solved as

%̃!kx!t",ky,t" = − !x%0( d2k1(t

dt1g!k,t;k1,t1"

1e−DQ!t1"ṽx!k1x!t1",k1y,t1" . !4"

Here, Q!t1"=ky
2!t− t1"+)t1

t dt!kx
2!t!", and g!k , t ;k1 , t1"=.!ky

−k1y".&kx−k1x+k1y)t1
t dt2#!t2"' is the Green’s function for

the evolution of %!. From Eq. (4), the flux and mean square
amplitude of %!, when averaged over the statistics of turbu-
lent flow vx, are:

#%!vx$ = −
!x%0

!20"2(
t

dt1d2k1e−ikyx)t1
t dt!#!t!"−DQ!t1"2!k1,t − t1" ,

!5"

#%!2$ =
!!x%0"2

!20"2 (
t

dt1dt2d2k1e−ikyx)t1
t2dt!#!t!"−D&Q!t1"+Q!t2"'

12!k1,t1 − t2" . !6"

Here, again Q!ti"=ky
2!t− ti"+)ti

t dt!kx
2!t!" for i=1,2, and sta-

tionary and homogeneous turbulence for vx has been as-
sumed with #ṽx!k1 , t1"ṽx!k2 , t2"$= !20"2.!k1+k2"2!k1 , t2
− t1".

For case (i), we can take 2!k , t2− t1"=!c.!t1− t2"3!k"
since !c is the shortest time scale in the system. Then, it is
trivial to see that the effect of shearing for the flux vanishes
as ##%!vx$$= #%!vx$=−!!c!x%0 / !20"2")d2k3!k", which is
consistent with the result for a steady shear flow. On the
other hand, the effect of dissipation D, enhanced by zonal
flow shearing, is critical to determining the amplitude
##%!2$$. This is because of the generation of fine scales in x
(or large kx), and requires the following quantity to be aver-
aged over an ensemble of zonal flows:

Iz * #e−D)0
!dt!kx

2!t!"$ . !7"

Since the argument of the exponential is quadratic in # with
nonvanishing mean value &!tkx!t"=−ky#!t"', the average can
be evaluated for each term by assuming Gaussian statistics
for #, after expanding the exponential function. Of course,
other forms of the probability distribution function should be
considered as well. For this average, shearing can be treated
as a random walk over !D, since the former changes many
times, so long as !ZF-!D. For instance, it is reasonable to
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take )0
t dt1)0

t dt2##!t1"#!t2"$+ t!ZF##2$. By using this and fo-
cusing on the strong shear limit Dky

2&!ZF##2$, we scale the
time with !D= !Dky

2!ZF##2$"−1/2 in the resulting average. This
will reduce the time integral in Eq. (6) to )tdt1e−DQ!t1"

=!D)0
/dsIz!s"=C!D in the long time limit !t→/", yielding a

convergent integral C*)0
/dsIz!s". Thus, the amplitude be-

comes

##%!2$$ =
!!x%0"2!c!DC

!20"2 ( d2k2!k" $ &Dky
2!ZF##2$'−1/2.

!8"

As compared with the amplitude #%!2$$!' ()!D for
!ZF&!D) for the case of coherent shearing, random shearing
clearly yields a larger scalar fluctuation amplitude. Equation
(8) also explicitly shows that the amplitude increases as !ZF
decreases, as it is expected to. The upper bound on the am-
plitude is, however, given by !D= !Dky

2##2$"−1 in order to
satisfy the assumption of the strong shear limit
Dky

2&!ZF##2$. Note that for a steady flow with constant #,
the argument of the exponential in Eq. (7) becomes propor-
tional to !3, resulting in a characteristic time scale !'. When
!ZF(!D, the zonal flow can be treated as steady, so the am-
plitude is proportional to !'. These results are summarized in
Table I.

For case (ii), we assume a Lorentzian frequency spec-
trum for 2 as 2!k , t2− t1"=)d*3!k"e−i*!t2−t1"+k / &!*−*k"2
++k

2'. Then, after performing the * integral, the ensemble
average of the flux becomes

##%!vx$$ = −
!x%0

!20"2(
t

d!d2k3!k"#e−ikyx)0
!dt!#!t!"$ , !9"

where != t− t1. By using Gaussian statistics for #, the en-
semble average over zonal flows can be approximated
as #e−ikyx)0

!dt!#!t!"$=e−!!kyx"
2/2")0

!dt!dt"##!t!"#!t""$+e−!!kyx"
2/2"!2##2$.

Note that zonal flow shearing was taken to be coherent over
the time interval t! &0,!', since the effective shearing time
!# is shorter than !ZF and also since turbulence varies on the
fast time scale +k

−1, thus giving a major contribution to the !
integral from small !. The remaining ! integral then gives
(by assuming *k)+k)

##%!vx$$ + −
!x%0

2!20"2/3 ( d2k3!k"
e−*k

2/!2ky
2x2##2$"

!ky
2x2##2$"1/2

. !10"

It is amusing to see that the scaling in Eq. (10) is exactly
what Eq. (2) predicted. The latter was obtained by taking an
average of the existing result for a steady shear flow. We
again note that the flux in Eq. (10) takes its maximum value

for *k=%2kyx2##2$, (which replaces the resonance condi-
tion), and is ,#rms

−1 .
In order to compute the amplitude for case (ii), we note

that the effect of dissipation enters on a long time scale !!D",
compared to other time scales. Thus, we envision taking av-
erage of zonal flows over two different time scales T1 and T2,
where !ZF ,!c&T1&!D and T2)!D. Thus, we can first ignore
the dissipation (i.e., D=0) and take average over T1, and then
take average over T2 with D"0. Then, analyses similar to
those given above yield

#%!2$ =
!!x%0"2

!20"2/3 ( d2k3!k"
!DCe−*k

2/!2ky
2x2##2$"

!ky
2x2##2$"1/2

$
1

##2$!Dky
2!ZF"1/2

, !11"

where again C*)/dsIz!s" is a convergent integral. Equation
(11) reveals that the amplitude in the case of random shear is
enhanced due to the inefficiency of turbulence regulation.
This is due to the shear’s random character, as compared to a
steady shear, where #%!2$$!' /#. For instance, the amplitude
increases as !ZF becomes small, as expected. The upper limit
on the amplitude is, however, again given by !D
= !Dky

2##2$"−1. On the other hand, as !ZF becomes larger than
!D, the parameter !D in Eq. (11) should be replaced by !',
since zonal flows can then be treated as steady flows.

We will now show that in the case of a steady zonal flow
with complex spatial dependence, the results are similar to
those in the case of linear shear flow, provided that # is
replaced by the rms shearing rate #rms= #!!xU"2$1/2, in agree-
ment with Ref. 12. Since it is plausible that lZF, the correla-
tion length of zonal flows, can be comparable to lc, that of
the turbulence, we can no longer Fourier decompose %! in x.
Therefore, we Fourier transform only in y and introduce a
phase function g!x , t" as

%!!x,t" =
1
20

( dkyeikyy+g!x,t"%̃!ky,x,t" . !12"

By assuming that -!xg /g-( -!x%̃ / %̃-, and by using the usual
Fourier transform for vx as vx!x , t"
= 1 4 20 )dkyeikyyv̄!ky ,x , t", Eq. (1) can easily be solved for %̃
as

%̃!x,ky,t" = − !x%0(t

dt1e−D&Q̄!k,t"−Q̄!k,t1"'−g!x,t1"v̄x!ky,x,t1" .

!13"

Here, Q̄!k , t"=ky
2t+ !kyU!"2t3 /3+ ikyU"t2 /2 with U!=!xU and

U"=!xxU. By exploiting the conditions of “steady and homo-
geneous turbulence” with the correlation function
#v̄x!x ,ky , t1"v̄x!x ,ky! , t2"$= !20".!ky+ky!"2!ky , t2− t1", we ob-
tain,

#%!vx$ = −
!x%0
!20"(

t

dt1dkye−ikyU!t−t1"−D&Q̄!k,t"−Q̄!k,t1"'2!ky,t − t1" ,

!14"

TABLE I. Summary of results for zonal flows with finite correlation time
!ZF.

!c&!ZF&!#-!D !#&!c&!ZF-!D !D-!ZF

##%!vx$$ #rms
0 #rms

−1 #rms
−1

##%!2$$ #rms
−1 #rms

−2 D−1/2 #rms
−5/3D−1/3
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#%!2$ =
!!x%0"2

!20" (
t

dt1dt2dky

1e−ikyU!t2−t1"−D&Q̄!k,t"+Q̄!−k,t"−Q̄!k,t1"−Q̄!−k,t2"'2!ky,t2 − t1" .
!15"

First, it is easy to see that for a . correlated flow vx (i.e.,
!c-!#), the flux is independent of U. However, the compu-
tation of ##%!2$$ requires an average (over zonal flows) like
#e−2D!kyU!"2!t3−t1

3"/3$. Since the scaling of the amplitude with
the rms shear is of greatest interest, this computation can be
done by following an analysis similar to that done previously
to obtain Eq. (8), and then scaling the time with
!Dky

2#U!2$"1/3. The result is

#%!2$ $
!!x%0"2!c

!20" ( dky3!ky"
1

&Dky
2#U!2$'1/3

. !16"

Therefore, the scaling of the amplitude with rms shear and D
are the same as those in the case of a linear shear flow,
provided that #U!2$1/2 replaces constant #.

For !#&!c&!D, we again use a Lorentzian frequency
spectrum for vx. After straight-forward algebra using Gauss-
ian statistics for U, U!, and U", and #UU!$= #U!U"$=0, we
can obtain the following scalings:

#%!vx$ + −
!x%0
!20" ( dky3!ky"

e−*k
2/!2ky

2#U2$"

-2ky#U2$1/2-
, !17"

#%!2$ $
!!x%0"2

!20" ( dky3!ky"
e−*k

2/!2ky
2#U2$"

-2ky#U2$1/2-&Dky
2##2$'1/3

.

!18"

Due to the spatial randomness of the zonal flow pattern, reso-
nance between zonal flow and turbulence is smoothed out,
with the maximum flux occurring when *k=%2ky2#U2$, as in
temporally random case [see Eq. (10)]. Therefore, the scal-
ings of the amplitude with shear and D are basically the same
as those for the case of a linear shear flow, provided that
#U!2$1/2 is replaced by #. We note that the curvature
effect U" does not appear in the final amplitude, since
a strong shear limit D2ky

2#U"2$ / &Dky
2#U!2$'4/3

,&!Dky
2"2 / #U!2$'1/3!lc / lZF"2-1 was assumed.

In summary, we have shown that the effect of random
shearing of zonal flows with finite autocorrelation time on
transport and fluctuation levels of scalar fields crucially de-
pends on the zonal flow pattern and correlation time !ZF. For
spatially random zonal flows U!x , t"=U!x" !lZF5 lc" with in-
finite memory time, the same scalings of flux and amplitude

of scalar fields with #U!2$1/2 are obtained as in the case of a
steady linear shear flow (with #U!2$1/2 replacing #).12 More
interesting results were found for zonal flows with finite cor-
relation time !ZF [i.e., U!x , t"=x#!t"] (see Table I). For
!c&!#-!ZF-!D, the flux becomes independent of shear to
leading order, while ##%!2$$$#rms

−1 . In the physically more
interesting case where !#-!c&!ZF-!D, ##%!vx$$$#rms

−1

while ##%!2$$$#rms
−2 D−1/2. The scaling of the latter, which is

different from #%!2$$#−5/3D−1/3 in the case of coherent
shearing #, is a result of the longer effective decorrelation
time of fluid elements !D)!' induced by finite zonal flow
autocorrelation time !ZF. As !ZF exceeds !D, zonal flows can
be considered to be steady in time, thus recovering previous
results.

The results of this paper highlight the great importance
of the determination of both the frequency spectrum (in par-
ticular, the correlation time !ZF) and PDF of zonal flows, in
both simulations and physical experiments. In particular, we
have assumed a Gaussian PDF of zonal flows throughout this
paper, but there are likely cases for which the PDF of zonal
flows is exponential or even power law. Experimentally, a
useful estimate on !ZF can be obtained from constructing the
average two time correlation function of a zonal flow VEŷ,
i.e., !ZF=)0

/dt#VE!!"VE!!+ t"$ / #VE!!"2$, or from the width of
the m=0 frequency spectrum. We finally note that the meth-
odology and approach of this work is relevant to geodesic
acoustic modes, but that the detailed analysis would require
the formulation of a toroidal model and the inclusion of a
broader range of zonal flow frequencies.

ACKNOWLEDGMENTS
We thank M. Malkov, S. Parker, Z. Lin, T. S. Hahm,

W. M. Nevins, and G. Tynan for stimulating discussions.
This research was supported by U.S. DOE FG03-88ER

53275.

1P. Goldreich and D. Lynden-Bell, Mon. Not. R. Astron. Soc. 130, 125
(1965).
2F. H. Busse, Geophys. Astrophys. Fluid Dyn. 23, 153 (1983).
3K. H. Burrell, Phys. Plasmas 4, 1499 (1997).
4M. E. McIntyre, J. Atmos. Terr. Phys. 51, 29 (1989).
5E. Kim and P. H. Diamond, Phys. Rev. Lett. 91, 075001 (2003).
6P. W. Terry, D. E. Newman, and A. S. Ware, Phys. Rev. Lett. 87, 185001
(2001).
7E. Kim, P. H. Diamond, and T. S. Hahm, Phys. Plasmas 11, 4554, (2004).
8P. H. Diamond, M. N. Rosenbluth, F. L. Hinton et al., in Plasma Phys. and
Controlled Nuclear Fusion Research (IAEA, Vienna, 1998) IAEA-CN-69/
TH3/1.
9Z. Lin, T. S. Hahm, W. W. Lee et al., Phys. Rev. Lett. 83, 3645 (1999).
10T. S. Hahm, M. A. Beer, Z. Lin et al., Phys. Plasmas 6, 922 (1999).
11H. Biglari, P. H. Diamond, and P. W. Terry, Phys. Fluids B 2, 1 (1990).
12P. H. Diamond, S. Champeaux, M. Malkov et al., Nucl. Fusion 41, 1067

(2001).

L80 Phys. Plasmas, Vol. 11, No. 12, December 2004 E-J. Kim and P. H. Diamond


